
Lab 3 Part III

1

Version 1

IBCS Mr. BrennanFile Processing
Introduce WHILE loops and file processing

Part I While Loops and Output Files
Description:

Deliverable: copyme.bas
 copyme.out

Description:

Deliverable: copyfile.bas

Part II Input Files

 The WHILE..WEND loop
 LINE INPUT
 OPEN file$ FOR OUTPUT AS #<channel>

 PRINT #, output­to­write

 OPEN file$ FOR INPUT AS #<channel>
 EOF

Part III File Processing
Description: Command Line Arguments

 INSTR
 CLOSE

Deliverable: scanfile.bas

Lab 3 Part III

2

Version 1

Lab 5 File Processing

Lab 3 Part III

3

Version 1

IBCS Part IIILab 5 File Processing

In Lab 5 Part II you created a program copyfile.bas
that prompts the user for the name of a file to copy,
and then created a copy of the file specified named
copyme.out.

To execute your program you issued the command:
c:>blassic copyfile.bas

If past labs you have used input redirection to
have the operating system get program input
from a file, rather than the keyboard, and pass it
to your program. You have also used output
redirection to tell the operating system to
redirect output to a file, rather than to the users
screen.

Lab 3 Part III

4

Version 1

IBCS Part IIILab 5 File Processing

In this lab, you will process command line arguments
that the user specifies when the run your program. You
will change your program to use file names for both the
input file and the output file that the user specifies
when they run your program.

This is a sample command line to run your program

 This tells your program to use testcopy.dat as the
input file, and copyme.out as the output file.
In general, the syntax for running your program is:
c:>blassic copyfile.bas <inputfile> <outputfile>

c:>blassic copyfile.bas testcopy.dat copyme.out

Lab 3 Part III

5

Version 1

IBCS Part IIILab 5 File Processing

Operating System Notes

When you issue the following command line
c:>blassic copyfile.bas testcopy.dat copyme.out

The operating system executes program blassic.com. It creates
an array of command line arguments that were also specified, and
the operating system passes that array to the blassic program.
Blassic then creates an array of strings that your program can
access.

programarg$(1) will contain the name of the input file testcopy.bas
programarg$(2) will contain the name of the output file copyme,out

The name of the array containing command line arguments is programarg$
When you issue the following command line

c:>blassic copyfile.bas testcopy.dat copyme.out

When you write basic program you can use the programarg$
 array to access command line parameters.

Lab 3 Part III

6

Version 1

IBCS Part IIILab 5 File Processing

1.

2.

3.

Change your copyfile.bas program to use the first
command line argument as the name of the input
file, no need to prompt the user for an input file
name.

Change the program to use the second command
line parameter for the name of the output file, so
it does not have to be name copyme.out.

It is good programming practice that when a
program is done with a file that it has opened, that
prior to the program terminating, the program
should close the file. You can close each of the files
by adding the following two lines to the end of your
program:

CLOSE #1 : REM Close the input file
CLOSE #2 : REM Close the output file

Lab 3 Part III

7

Version 1

IBCS Part IIILab 5 File Processing

4. Test your program using the following command line:
c:>blassic copyfile.bas testcopy.dat copyme.out

When you are satisfied that your program is
working, continue to the next step.

Make some note about the type of
error checking that might be
appropriate for this program.

Lab 3 Part III

8

Version 1

IBCS Part IIILab 5 File Processing

Your program now reads the contents of a file and
writes it to a new file. Now we will add some
processing to the input file before writing it to the
output file.

You will change your program so that it will read
an input file, one line at a time, but only print to
the output file the lines that contain the word
software.

To do this, you will use the function INSTR
which will search one string for the occurrence of
another. In this case, we are looking for the word
software.

Lab 3 Part III

9

Version 1

IBCS Part IIILab 5 File Processing

If you have a line of text in variable A$ and you
want to know the position of the first occurrence of
the word software you could use the following
command:

The value 8 is assigned to variable j. If the word
software did not occur in the first string, such as

then the value of j would be 0.

j = INSTR("I am a software engineer", "software")

j = INSTR("I am a soft­ware engineer", "software")

Lab 3 Part III

10

Version 1

IBCS Part IIILab 5 File Processing

There are two general forms of the INSTR function:
INSTR(str1$, str2$) return the position of the first
 occurrence of str2$ in str1$,
 or 0 if str2$ is not in str1$.

INSTR(n, str1$, str2$) return the position of the first
 occurrence of str2$ in str1$ that
 begins searching at position n in str1$
 or 0 if str2$ is not in str1$ past n.
Example:
 p = INSTR(10, "I like software, developing software is fun", "software")

Assigns the value 29 to variable p. This format of the instr
function is good when you need to process all occurrences of
a string.

Lab 3 Part III

11

Version 1

IBCS Part IIILab 5 File Processing

5.

Change your program to only copy lines from
the input file to the output file the lines that
contain the word software.

When you are satisfied that your program is
working, continue to the next step.

6.

Change your program to use a third command
line parameter, a string to search for. Rather
than searching for the word software search
for the string specified by the third command
line argument.

7.

Save your program with the new name findstr.bas

Lab 3 Part III

12

Version 1

IBCS Part IIILab 5 File Processing

10. Submit your program findstr.bas

9. Test your program using a variety of input files
and search strings.
Suggestions:
search for NAME in your bas programs to make
sure that you have updated them.
search for WHILE to see if a particular program
uses a WHILE loop.

Lab 3 Part III

13

Version 1

IBCS Part IIILab 5 File Processing

Attachments

echo.bas

100 REM File: echo.bas

110 REM Name:

120 REM Purpose: echo each line that the user types in

130 REM until the user enters "stop program"

200 Print "Enter text to be echoed, or stop program to end the program"

300 input A$

400 while A$ <> "stop program"

500 print A$

600 input A$: rem get the next line of user input

700 wend

800 PRINT "Program terminating"

900

999

SMART Notebook

	Page 1: lab Splash
	Page 2: Symbols
	Page 3: Part III
	Page 4: Part III
	Page 5: Part III
	Page 6: Part III
	Page 7: Part III
	Page 8: Part III
	Page 9: Part III
	Page 10: Part III
	Page 11: Part III
	Page 12: Part III
	Page 13: Part III
	Attachments Page 1

