P88

V01

Introduction to Low Level Programming

The P88 simulator used demonstrated in class allows
programmers to write and execute low level program.

Low level programming languages use a syntax that is very
close to machine-level languages - that is, it is a format that
has very little abstraction from how the machine operates.

A high-level programming language on the other hand, uses a
an abstract syntax that is closer to a spoken language, and
where a single high level program statement may actually
have to be implemented in many separate machine-level
instructions. The high-level programming languages are
easier to program because the provide an abstract view of
how the computer operates.

P88

The P88 simulator contains the following components:

There are 100 memory locations labeled along the top x-axis and left side axis as locations 00 - 99. Memory locations 00
through 11 and memory location 99 have the memory address stored as their values and you can see that I've set all
other memory locations to 0.

When a program is loaded into memory, or you write a program, the instructions to be executed as well as the data used
and stored by your program will be in these memory locations.

It is good programming practice to keep the instructions in one area, and the data in another.

You will also see that there is an output area which will be used when a out command is executed.

| £+ PEE Simulator

S —

Operations P88 0 1 2 3 4 5
12: add
e op Jp Jp g | b
15: cmp 10 {0 | 11 | lo | lo | o | o
21: copy (store)
35 mul o p Jp Jp Jp Jp P
P T | | | —)
oo | O | S | o
42: jb 60 o I I P It | o
o i o Jp Jpo Jp Jp P
56: out
9 s LT | R | | S T |
other: halt %0 o | o o | lo | o o

demoas |v|[Loas | | opemme.. || saveas. | | Feten |

V01

P88

V01

The P88 simulator contains the following components:

The AX register, which was referred to as the "accumulator” is where computations take place. This is also called

the Computation Register, and for the purpose of this computer, can also be thought of as the Arithmetic Logic Unit which
will be discussed in greater detail in future classes.

The IP register is the Instruction Pointer - it will contain the address (00 to 99) of the next instruction that will be
fetched and executed.

The IR register is the Instruction Register - this contains the current instruction to execute.
When the Fetch button is pressed, the instruction identified by the IP will be loaded into the IR.

The CF register is the Condition Flag register - it will contain the results of a comparison operation.

| 4| PEE Simulator |
AX 3 | TP 5 | IR o | CF 229

Operations P88 0 1 2 3 4 5 6 7 8 g Output

12: add

i o b Jp 1 1 1 I JF 16 b T

15: cnp oo 1 fp Jp Jpo Jp Jp fp Jo Jp |

20:copylload) 0 p o Jp_ b Jp JpbJp fp JpJp]

21: copy (store)

35: mul o p Jp o Jp Jp Jp b JpJp Jp |

36: div o p Jp jp Jp Jp Jp Jp Jp Jp lp |

s o p b Jp Jb_Jp_Jp b b _Jp__Jp |

42:jb so o Jp Jp Jp Jpo Jp Jp Jp Jo Jp |

o o Jp fp Jp Jp Jp Jp Jp Jo Jp |

56: out

200 T |) |, | | S

other: halt % [0 o | lo | o | o | lo o | o | o B | cearoutput

demoas ||| Loas | | opentie.. || saveas. | | Feteh | HETRES | setbelay |[o0]

P88

V01
| %] P88 Simulator =R
ax| e Jm[JcEfe
Operations P88 0 1 2 3 4 5 6 7 8 9 Oufput

i;:jg 0 [20010 |[12011 |[21012 |[56999 |0 | lo o | o | o | o |

15: cmp 10 {128 [fp o Jp fp Jp [Jp [|
ccopyfload) 0 o Jp fp Jp o Jp Jp JpJp Jp]

21: copy (store)

35: mul e [| e e e =
i 90 p Jo Jp Jp Jp Jp Jp JpoJp fp |
il S | T | | | O | O T ——
12:jb 0o p Jp o fp fo Jp Jp Jp_Jp [|
i op Jp Jp o fo Jp Jp Jp Jp [|

o i o p Jp Jp fp fpo Jp o Jp Jp [|
other: halt 90 [o o o o | lo | lo o o | o | Clear output |

demoas |v|[load | | openme.. || saveas. | | Feten | | Run | | setpelay |[500 |

This is the demo.as program, it uses memory locations 00 to 04 to hold the program statements to be
executed, and it uses memory locations 10 to 12 to hold data (variables).

To begin the program, a 0 is loaded into the IP register, this is where the next instruction (or first instruction
in this case) is located. Take a look at the program, and decode it using the operations table listed above on

the left.

Address
00

01

02

03
04

Contents

20 010

12 011

21012

56 999
0

Command
copy (load) 10

add 011
copy (store) 12

out
not defined

means take the value that is in memory location 10

and load it into the AX register. The value at location 10 is 123.
means take the value that is in memory location 11

and add it to what is in the AX register. The value at location 11
is 456, so the new value in the AX register is 123 + 456 = 579
means take the value in the AX register and store in location 12
means take the value in the AX register and copy to the output
means terminate the program, the operation is not defined.

P88

V01

| %/ P88 Simulator == EcE ="
AX| | TP o IR | | CF 222

Operations P88 0 1 2 3 4 5 6 7 8 9 Output

i;::g 0 20010 |[12011 |[21012 |[s6998 |0 | lo o o o | o

15: cmnp 10 (123 [jss6 |[o P It I It I I o |

g ““P”:“t’*‘d’} 20 |0 I I I o I It I I o

: copy (store

35: mul 30 o I I I o I It J I o

o 40 P I b o I | b It I I o

= 50 |0 I b JE It I b |l I I

42: jb 60 [0 o I JE o |l It b I IL

B, s 70 o I b I o |l It I I I

56: out

o5 i 80 o I IE o IL I b | I I -

other: halt %0 0 | o | lo o | o | o | lo | o | 1o o | crearoutput |
Idemu.ﬁs F| | Load | | Open file... ! I Save as... | ‘ Fetch | . T | Run | . C | | Set De$a_y_i

You can use the pull-down menu to select different programs that
are available, and the load them into memory. You can then decode
them the way the demo.as program was decoded, or you can step
through the program one instruction at a time using "Fetch" and
then "Execute". You can also select Run which will step through the
program automatically. Use the "Set Delay" to set the number of
milliseconds between instructions.

P88

Operations
12: add

13: sub

15: cmp

20: copy (load)
21: copy (store)
35: mul

36: div

40: jmp

41: jnb

42:7b

55:1in

56: out

99: nop

other: halt

Ready to write a program?

The first step should be to write a high-level
abstraction of what you would like the program to
do, and how it should do it. Pseudo-code

Next, write the instructions (in English) using the
operations that are available in the P88 language

(see left). we!'ll refer to this as assembly language.

Next, translate the instructions into the machine
code that can be loaded into the memory sells. I
good guideline is to start the IP with value O, and
put the first instruction in address O.

Then save your file, test it, make any necessary
changes, and submit it for grading, along with the
Pseudocode and assembly code.

V01

P88

V01

Write a program:

If you have an idea for a program then feel free to implement it; be sure to submit the Pseudocode,
assembly code, and P88.as file; otherwise try fo complete the "absolute value" program started
below:

The Absolute value Program
Description: prompt the user for an integer. Output the absolute value of the integer entered by
the user.

Pseudo-code Assembly Machine Code
Operations
12: add 00 in Your task is to
Read x 13: sub translate the
Lo 01 cmp 30 assembly code
if x <0 then ig copy (load) 02 nb 004 into machine
: copy (store) d d but it
X=Xx*-1 s | 03 muilt 51 f:o e and put i
Output X 36: div o 56 ar?‘ro the P88
40: jmp simulator.
41: jnb 05 O
else 22: b
output x 55: in
56 out store 0 in memory 50
99: nop 0 e uhenyou
end prog ram other: halt 51 i are entering the

program code

	Page 1: Intro P88
	Page 2: Screen Fields
	Page 3: Screen Fields
	Page 4: Demo Program
	Page 5: Nov 5-11:52 PM
	Page 6: Writing a Program
	Page 7: Assignment

