P88 Programming Notes

Reading and Storing a List of Numbers

Task: Write a P88 program to prompt the user for up to 10 positive integers, storing them in memory locations 40 through 49. If the user enters a negative number then the program should stop prompting the user for additional numbers.

Basic pseudo-code for a solution using a For-loop:

Pseudo-code						Notes:					
For location = 40 to 49 				location is both a loop variable
	Read in a value from the user 			and the P88 memory location
	If the value is < 0 					where to store the value entered
			then stop the loop 				by the user
		store the value in location
		next location 					the for loop will add one to location
		

P88 does not provide a for-loop structure. By converting the pseudo-code into a while-loop format the pseudo-code can be more easily translated into P88 instructions:

Pseudo-code						Notes:					
location = 40
While location <= 49 				location is both a loop variable
	Read in a value from the user 			and the P88 memory location
	If the value is < 0 					where to store the value entered
			then stop the loop 				by the user
		store the value in location
	 	location = location + 1				increment the loop counter
		end while

P88 does not provide for a while loop, but the while loop can be implemented using a loop created by goto statements (or in P88 terms, a jmp instruction). In the pseudo-code on the right, rather than specifying memory locations with goto statements, a label will be specified. A label is just a name followed by a : that will represent the memory location of an instruction.

	While-loop Pseudo-code	
	
	Goto-loop Pseudo Code

	
location = 40
While location <= 49
	Read in a value from the user
	If the value is < 0 	
			then stop the loop 		
	store the value in location
	location = location + 1		
	end while
	
	Initialize:	
	location = 40
Read_Loop:
	If location > 49
		then goto After_loop
	Read value from user
	If value is < 0 	
		then goto After_loop 			
	store the value in location
 	location = location + 1	
	goto Read_Loop
After_Loop:
	Halt

The Goto-loop psedo-code is copied below (left) to help translate the program into a pseudo-code that is more like P88 assembly code. The code on the right is still pseudo-code because it uses names to represent memory locations (like the variable named location). In the final assembly code specific memory locations for variables will be assigned. Load and Store will be used as the terms from loading values from memory into the AX register, and storing values from the AX register into memory.

	Goto-loop Pseudo Code
	
	P88 Assembly Pseudo Code
	Notes

	Initialize:		
	location = 40
Read_Loop:
	If location > 49
		then goto After_loop
	

 Read value from user
	If value is < 0 	
		then goto After_loop 			
	
 store the value in location
 	location = location + 1	
	goto Read_Loop
After_Loop:
	Halt
	
	Initialize:	
	location = 40
Read_Loop:
Load location
cmp "49"
jnb After_loop

in
	cmp "0"
	jb After_loop 			

	store location
 location = location + 1	
	goto Read_Loop
After_Loop:
	Halt
	

If AX < "49"
 Then CF = B
 Else CF = NB
If CF = NB
 Then goto After_loop

Read user input into AX
If AX < "0"
 Then CF = B
 Else CF = NB
If CF = NB
 Then goto After_loop

It is not necessary to create so many versions of pseudo code. Use a high level version of pseudo-code so that you can adequately output the list of steps that are necessary to solve a problem. The highest-level pseudo-code does not need to be modeled after any particular programming language. It is recommended that you think in term of program structures, such as if-then-else statements, for-loops and while-loops rather than goto (or jump) statements. Goto statements often lead to very unstructured programs and can be very difficult to read, follow, and debug.

	Memory locations 50-59 will contain constants – numbers that will not change when the program in executed:
	Memory Location
	50
	51
	52
	53
	54
	55
	56
	57
	58

	Value
	0
	1
	-1
	
	
	21000
	
	50
	

	Use
	To set variables to 0
	To add 1 to AX
	To subtract 1 from AX
	
	
	To help create store instructions
	
	One higher than last location
	

Memory locations 60-69 will contain variables – numbers that will change when the program in executed:
	Memory Location
	60
	61
	62
	63
	64
	65
	66
	67
	68

	Staring Value
	40
	0
	
	
	
	
	
	
	

	Use
	Location
	Input value
	
	
	
	
	
	
	

	P88 Assembly Pseudo Code
	P88 Assembly
	P88 Machine Code

	
Read_Loop:
Load location
cmp "49"
jnb After_loop

in
	cmp "0"
	jb After_loop 			

	store location

		
 	location = location + 1	
	goto Read_Loop
After_Loop:
	Halt
		Memory
Location
	Machine Code

	0
	load 060

	1
	cmp 057

	2
	jnb 016

	3
	in

	4
	cmp 050

	5
	Jb 016

	6
	store 061

	7
	load 055

	8
	add 060

	9
	Store 011

	10
	load 061

	11
	store 999

	12
	load 060

	13
	add 051

	14
	store 060

	15
	jmp 000

	16
	0

		Memory
Location
	Machine Code

	0
	20 060

	1
	15 057

	2
	41 016

	3
	55 999

	4
	15 050

	5
	42 016

	6
	21 061

	7
	20 055

	8
	12 060

	9
	21 011

	10
	20 061

	11
	21 999

	12
	20 060

	13
	12 051

	14
	21 060

	15
	40 000

	16
	0

	store location Notes:
Where to store the input value changes from 40, 41, 42…. based on the value stored in variable location. After the value has been read, it is saved in memory location 61. A "store" command is created and then stored in instruction 11 – this will contain the real "store" command.
store location -> save input in 61
 load AX with 21000 the start of a store command
 add location add the rest of the instruction
 store this value (21040 – 21049) in memory location 11
 load 61 get back the input value
 memory location 11: store save the input in location

[image:]

Notice that in this version of the program the instruction in memory location 16 is not a HALT command.

The program code that starts in memory location 80 will output a list of numbers that begin with the memory location that is stored in memory location 60. Notice that memory location 60 contains 40 – the start of the list of numbers to output begins in memory location 40.

The program code that outputs the list of numbers expects that memory location 61 will contain the last memory location to output.

After the program reads in a list of numbers, in statement 16 it will begin to prepare to output the list of numbers.
Statement 16 now says	20060	 	this is variable "location" which will contain
								the last place a number was store in the list
Statement	17			21061		save this in location 61
Statement 18			20056		Loads 40 – the starting list location
Statement 19			21060		Stores 40 into location 60
Statement 20			40080		goto 80 to output the list of numbers
								specified by the range stored in 60 and 61
image1.png

