

Notes: The Marie Simulator

The Accumulator (AC) is the register where calculations are performed.

To add two numbers together,

a) load the first number into the accumulator with a Load instruction

b) Add the second number to the accumulator using an Add instruction

c) Most of the time, you will want to store the result of a calculation somewhere using a

Store command, or display the result using the Output instruction,

Notes: The Marie Simulator

Instruction Number
Instruction Notes

Binary Hexadecimal

0001 1 Load X Take the value that is stored at address X and Load it

into the Accumulator (AC)

0010 2 Store X Take the contents of the accumulator, and store it in

memory location X

0011 3 Add X Take the contents of memory address X and add it to

the contents of the accumulator – the result of the

calculation is remains in accumulator (AC)

0100 4 Subt X Take the contents of memory address X and subtract it

from the contents of the accumulator – the result of the

calculation is remains in the accumulator (AC)

0101 5 Input Accept a value from the keyboard and put it into the

accumulator (AC)

0110 6 Output Copy the value of the accumulator (AC) and display it

as the next line of output.

0111 7 Halt Terminate the program

1000 8 Skipcond Possibly skip the next instruction depending on some

condition

1001 9 Jump X Load the value of X into the Program Counter (PC).

This is the address of the next instruction to be

processed.

Example 1: Add two numbers together that are specified by the user, and output the result.

Pseudo Code Marie Assembly
Code

Machine Code
HEX BIN

Get the first number from the user –
which will put the value into the
Accumulator

Input 5000 0101000000000000

Store the first number in memory
location FF

Store FF 20FF 0010000011111111

Get the second number from the
user – which puts the second value
into the Accumulator

Input 5000 0101000000000000

Add the first number that was
stored in memory location FF to the
Accumulator

Add FF 30FF 0011000011111111

Output the sum – which is now in
the Accumulator

Output 6000 0110000000000000

Halt the program Halt 7000 0111000000000000

Notes: The Marie Simulator

File
 Load
 add.mex

Notes: The Marie Simulator

Program execution using decimal numbers 100 and 200

Notes: The Marie Simulator

Instruction Number
Instruction Notes

Binary Hexadecimal

0000 0 JnS X Store the program counter at memory location X,

which would have been the next instruction to perform,

and then jump (branch) to memory location X +1.

This essentially stores the "return address" for making a

"call" to the program block starting at X.

Location X is where to save the return address,

location X+1 is where the coding begins for a "called"

subroutine. The subroutine will probably finish with a

JumpI X command.

1010 A Clear Set the Accumulator to zero

1011 B AddI X Add indirect – go to address X and use the value at X

as the actual address of the data operant to add to AC.

In higher level languages this is considered a pointer to

an integer

1100 C JumpI X Jump Indirect – go to address X, use the value at X as

the actual address of the location to jump to; This is

good for branching back from a subroutine call.

1101 D LoadI X Load Indirect – go to address X, use the value at X as

the actual address of the location to load into the

accumulator AC. AC = Mem[X]

1110 E StoreI X Store Indirect – go to address X, use the value at X as

the actual address of the location of where to store the

value in the accumulator. Mem[X] = AC

Notes: The Marie Simulator

each instruction for MARIE consists of 16bits. The most significant 4 bits, bits 12–15, make
up the opcode that specifies the instruction to be executed (which allows for a total of 16
instructions). The least significant 12 bits, bits 0–11, form an address, which allows for a
maximum memory size of 212–1. The instruction format for MARIE is shown in Figure
4.10.

AC Accumulato

Input Register

IR Instruction Regiser

Input Register

MAR Memory Address Register

MBR - Memory Buffer Register

Memory

Output Register

PC Program Counter

ALU Arithmetic Logic Unit

Notes: The Marie Simulator

Glossary

instruction set architecture (ISA) of a machine specifies the instructions that
the computer can per-form and the format for each instruction.

