ath
"wﬁ Notes: The Marie Simulator

The Accumulator (AC) is the register where calculations are performed.
To add two numbers together,
a) load the first number into the accumulator with a Load instruction
b) Add the second number to the accumulator using an Add instruction
c) Most of the time, you will want to store the result of a calculation somewhere using a
Store command, or display the result using the Output instruction,

mea‘th

TU

Notes: The Marie Simulator

¥nstruct10n Numl?er Instruction Notes
Binary | Hexadecimal

0001 1 Load X Take the value that is stored at address X and Load it
into the Accumulator (AC)

0010 2 Store X Take the contents of the accumulator, and store it in
memory location X

0011 3 Add X Take the contents of memory address X and add it to
the contents of the accumulator — the result of the
calculation is remains in accumulator (AC)

0100 4 Subt X Take the contents of memory address X and subtract it
from the contents of the accumulator — the result of the
calculation is remains in the accumulator (AC)

0101 5 Input Accept a value from the keyboard and put it into the
accumulator (AC)

0110 6 Output Copy the value of the accumulator (AC) and display it
as the next line of output.

0111 7 Halt Terminate the program

1000 8 Skipcond | Possibly skip the next instruction depending on some
condition

1001 9 Jump X Load the value of X into the Program Counter (PC).
This is the address of the next instruction to be
processed.

Example 1: Add two numbers together that are specified by the user, and output the result.

Pseudo Code Marie Assembly Machine Code
Code HEX BIN

Get the first number from the user - | Input 5000 0101000000000000
which will put the value into the
Accumulator
Store the first number in memory Store FF 20FF 0010000011111111
location FF
Get the second number from the Input 5000 0101000000000000
user - which puts the second value
into the Accumulator
Add the first number that was Add FF 30FF 0011000011111111
stored in memory location FF to the
Accumulator
Output the sum - which is now in Output 6000 0110000000000000
the Accumulator
Halt the program Halt 7000 0111000000000000

Hw"ath

T Notes: The Marie Simulator
File B T —
Load File Run | Sop | Step | Breakpoints | SymbolMap | Heip
add.mex

STCRE FF 2008
INEUT 5000
ALDD 3008
CUTEUT 6000
HALT 7000
DEC 0ooao

FF

Aszsembly listing for: add.mas

SYMBOL TABLE

| Input Assembled: Wed Zung 10 13:02:24 EDT 2016
Store FF
Input
2dd FF Q00 3000 1 INEUT
Output 001 2006 | STORE FF
Halt 002 5000 | INEUT
FE, Dec O 003 3006 | ADD FF
004 w000 | OUTBUT
005 7000 | HALT I
006 0000 | FF DEC 0
Assembly successful.

Symbol | Defined | References

oiE | 00e

Hw“atll

Notes: The Marie Simulator

Program execution using decimal numbers 100 and 200

M
file Run | Stop | Step | Breakpoints | SymbolMap | Help

| opcode | operand | hex

INEUT 5000
STORE FF 2008
INFUT 5000
ADD FF 3008
QUTFUT /000

] u]u]e]

ooo
o010
020 | 0000 0O0C0OQ O000 0000 0000 0000 0000 0000 0000 0000 0000 Q000 0000 0000 0000 0000
030
040

mea‘th

TU

Notes: The Marie Simulator

Instrection Num ber |

Binary Hex Ins truc l:iun| Meaning

0000 0 InS X Store the PC at address ¥ and jump to ¥=1

0001 1 Load X Load contents of address X into AC

0010 2 Store X Store the contents of AC at address X

001l 3 Add X Add the contents of address X to AC

0100 4 Subt ¥ Subtract the contents of Address ¥ from AC

0101 5 Input Input a walue from the kevboard into AC

0110 =] Cutput Cutput the value in ACteo the display.

oiii 7 Hal Terminate program

1000 g Skipcond |Skip next instruction on condition,

1001 9 Jurmp X Load the value of X inta PC

1010 A dear Sets AC to Fero.
Add indirect: Go to address ¥ Use the value at X as

1011 B Addl ¥
the actual address of the data operand to add to AC
Jump indirect: Go to address X Use the value at X as

—— = AT the actual address of the location to jump to

opcode address
| | | |
0/0|0|1|0|0|0|0|0|0|0|0|0]|0(1|1

1514 13121110 8 8 ¥ 68 5 4 3 2 1 0

Instruction Number

Binary

Hexadecimal

Instruction

Notes

0000

0

JnS X

Store the program counter at memory location X,
which would have been the next instruction to perform,
and then jump (branch) to memory location X +1.

This essentially stores the "return address" for making a
"call" to the program block starting at X.

Location X is where to save the return address,

location X+1 is where the coding begins for a "called"
subroutine. The subroutine will probably finish with a
Jumpl X command.

1010

Clear

Set the Accumulator to zero

1011

AddI X

Add indirect — go to address X and use the value at X
as the actual address of the data operant to add to AC.
In higher level languages this is considered a pointer to
an integer

1100

JumpI X

Jump Indirect — go to address X, use the value at X as
the actual address of the location to jump to; This is
good for branching back from a subroutine call.

1101

LoadI X

Load Indirect — go to address X, use the value at X as
the actual address of the location to load into the
accumulator AC. AC = Mem[X]

1110

Storel X

Store Indirect — go to address X, use the value at X as
the actual address of the location of where to store the
value in the accumulator. Mem[X] = AC

mea‘th

Notes: The Marie Simulator

each instruction for MARIE consists of 16bits. The most significant 4 bits, bits 12-15, make
up the opcode that specifies the instruction to be executed (which allows for a total of 16
instructions). The least significant 12 bits, bits 0-11, form an address, which allows for a
maximum memory size of 212-1. The instruction format for MARIE is shown in Figure
4.10.

Opcode Address

Bit 15 12 11 0

FIGURE 4.10 MARIE's Instruction Format

AC Accumulato

Input Register

IR Instruction Regiser

Input Register

MAR Memory Address Register
MBR - Memory Buffer Register
Memory

Output Register

PC Program Counter

ALU Arithmetic Logic Unit

ath
"wﬁ Notes: The Marie Simulator

Glossary
instruction set architecture (ISA) of a machine specifies the instructions that
the computer can per-form and the format for each instruction.

